

Novel EUV Resist Materials Design for 15 nm Half Pitch and Below

Hideaki Tsubaki1)

Shinji Tarutani¹⁾, Toru Fujimori¹⁾, Hiroo Takizawa²⁾, and Takahiro Goto¹⁾

Research & Development management headquarters

- 1) Electronic Materials Research Laboratories
- 2) Synthetic Organic Chemistry Laboratories

FUJIFILM Corporation

- 1. Motivation
- 2. Resist design for 15 nm HP and below
- 3. Latest FUJIFILM EUV resist
- 4. Summary

- 1. Motivation
- 2. Resist design for 15 nm HP and below
- 3. Latest FUJIFILM EUV resist
- 4. Summary

FUJIFILM EUV resist performances

-- FEVS-P1507D4 --

Esize	LWR	EL	Max DOF
(mJ/cm ²)	(nm)	(%)	(nm)
30.8	3.0	23.2 🙂	200 🙂

15 nm HP

Courtesy of SEMATECH

EUVL symposium 2012, LBNL MET with PPSM illumination

Esize = 30.8 mJ/cm^2 LWR = 3.0 nm

Key issues on 15 nm hp and below

-- FEVS-P1507D4 --

15 nm HP

14 nm HP

30.8 mJ/cm²

Severe pinching degrades pattern quality (LWR)

Status of FUJIFILM EUV resist

Performance	Requirement	Status	Our policy
Resolution	< 16 nm	Con	Hydrophobic resin SPIE2012 Short diff. acid SPIE2013
LWR	< 2.0 nm	1 X X 1	Short diff. acid High Tg resin EUV sensitizer
Sensitivity	< ~ 20 mJ/cm ²	3 X X hJ	Low Ea resist SPIE2013
Process window	200 nm DOF @10%EL	(1)	
Defectivity	< 0.1 cm ²	?	EUV additive SPIE2012
Outgassing	Cleanable < 3.0nm Non-clean < 0.16%	Coopble	Non-volatile PAG Topcoat SPIE2013

- 1. Motivation
- 2. Resist design for 15 nm HP and below
- 3. Latest FUJIFILM EUV resist
- 4. Summary

Proposed origins of pinching

Material Factor

- 1. Chemical Contrast Degradation
 - ⇒ acid diffusion
- 2. Acid noise

Optical Factor

- **1. Optical Contrast Degradation**
- 2. Photon Shot Noise
- 3. Mask Roughness

Pinching

High contrast and low acid noise design are necessary

Impact of acid diffusion

Diffusion is important because EUV is narrow pitch

Acid diffusion suppression

HP 15 nm LBNL MET data

PPSM illumination (NA 0.3)

Small molecular acid Std. polymer

Large molecular acid **High Tg polymer**

Esize = 30 mJ/cm^2 LWR = -- nmsevere top loss

Esize = 36 mJ/cm^2 LWR = 4.7 nmnZ = 1.0

Esize = 45 mJ/cm^2 LWR = 3.8 nmnZ = 0.8

Large acid and high Tg resin gave best LWR / Z factor

Acid design for each technology node

Molecular PAG should be still effective for 15nm hp

Proposed origins of pinching

Material Factor

- 1. Chemical Contrast Degradation
 - ⇒ acid diffusion
- 2. Acid noise

Optical Factor

- 1. Optical Contrast Degradation
- 2. Photon Shot Noise
- 3. Mask Roughness

High contrast and low acid noise design are necessary

Pinching

Noise determines LWR / pinching

Acid noise also determines LWR, so noise reduction by increasing acid is important

EUV acid generation mechanism

Recombination of anion and proton

Acid generation consists of several key steps initiated by EUV light absorption

Experimental demonstration

~ E-beam model experiment for acid generation ~

100 150 200 250 300

Dose, uC/cm2

Exposure energy

⇒ EUV absorption

$$[H^+] = 1 - \exp(-C \times dose)$$

PAG decomposition can be fitted by *Dill* model

High dose results in high acid yield (normal behavior)

⇒ high absorption is necessary for high acid @low dose

0.1

Contribution of the other processes?

~ E-beam model experiment for acid generation ~

Efficiency of subsequent electron trap & acid generation processes are already maximized

EUV acid generation mechanism

Recombination of anion and proton

Limiting process should be "EUV absorption" and resulting "2e- generation"

EUV sensitization by absorption increase

x 1.15 acid yield was achieved using a new sensitizer

- 1. Motivation
- 2. Resist design for 15 nm HP and below
- 3. Latest FUJIFILM EUV resist
- 4. Summary

FUJIFILM EUV resist status update

-- FEVS-P1935B4 --

E-beam point beam (50keV), DIW rinse @ 16nm hp

FEVS-P1935B4 well resolved 16 nm hp w./o. pinching (Notes: E-beam exposure)

- 1. Motivation
- 2. Resist design for 15 nm HP and below
- 3. Latest FUJIFILM EUV resist
- 4. Summary

Summary

- 1. FEVS-P1507D4 resolved 15nm HP (partially 14 nm) with LWR of 3.0 nm, and sensitivity of 30.8 mJ/cm².
 - ⇒ Z-factor : 3.7E-9 mJ·nm³ (best to our knowledge)
- 2. Pinching degraded LWR of 15 nm HP, and this should be originated by noise and contrast degradation.
- 3. Short diffusion molecular PAG was still effective for 15 nm HP. Bound PAG may be not necessary even for such a narrow pitch
- 4. **EUV acid generation** was limited by EUV light absorption and secondary electron generation.
- 5. EUV sensitizer w./ EUV absorbing unit showed 1.15 times higher acid yield than conventional PHS polymer
- 6. FEVS-P1935B4 (new resist w./ high Tg) resolved 16 nm HP (E-beam) without pinching

Acknowledgement

For the EUV exposure using MET

Thank you for your kind attention.

FUJ!FILM